Подсистемы хранения данных

         

Индустрия жестких дисков: дальше — больше


Данил Анисимов, Евгений Патий

"Экспресс Электроника"

За последние полгода мировая индустрия жестких дисков отметила сразу две знаменательные даты. В сентябре 2006-го исполнилось ровно 50 лет со дня выхода в свет дисковой системы IBM RAMAC (Random Access Method of Accounting and Control), а буквально месяц назад компания Hitachi Global Storage Technologies объявила о выпуске первого винчестера форм-фактора 3,5 дюйма объемом 1 Тбайт.

Создание IBM RAMAC, первой коммерческой системы с произвольным доступом к данным, считается официальным рождением жесткого диска. За время, прошедшее с этого момента, индустрия сделала гигантский шаг вперед. Судите сами: объем накопителей увеличился примерно в 200 тыс. раз, их удельная стоимость — в 25 млн, а поверхностная плотность записи — в 75 млн раз (см. таблицу).

IBM RAMAC Maxtor 7040A Hitachi Deskstar 7K1000

Год выпуска 1956 1991 2007
Объем 5 Мбайт 40 Мбайт 1 Тбайт
Количество пластин 50 3 5
Диаметр пластины 24 дюйма 3,5 дюйма 3,5 дюйма
Плотность записи 2 кбит/дюйм2 10 Мбит/дюйм2 150 Гбит/дюйм2
Скорость вращения 1200 об/мин 3500 об/мин 7200 об/мин
Среднее время доступа 1 с 30 мс 4,17 мс
Максимальная скорость интерфейса 9 кбайт/с 800 кбайт/с 300 Мбайт/с
Удельная стоимость $10 000/Мбайт $6/Мбайт $0,4/Гбайт

Таблица. Сравнение основных параметров винчестеров

Созданная 50 лет назад система IBM RAMAC напоминала два больших холодильника. Она состояла из 50-ти покрытых оксидом железа 24-дюймовых пластин, способных хранить 5 Мбайт информации. Для сравнения: текстовый файл с четырьмя томами романа Льва Толстого «Война и мир» занимает на современных дисках 2,5 Мбайт данных, то есть система IBM RAMAC была способна вместить два таких файла. По тем временам это был весьма существенный показатель, достаточный для решения большинства задач. Поэтому абсолютный объем жестких дисков на первых порах увеличивался не сильно, разработчики пытались повысить показатель плотности записи, уменьшая габариты устройств и их стоимость.
Любопытно, что компьютеры на основе дисковой системы IBM RAMAC не продавались, а сдавались в аренду. Причем, несмотря на относительно высокую стоимость арендной платы, компания IBM сумела найти более сотни заказчиков.



Система IBM RAMAC состояла из 50-ти покрытых оксидом железа 24-дюймовых пластин, способных хранить 5 Мбайт информации

Далее индустрия жестких дисков развивалась по экстенсивному пути: производители просто уменьшали размер битовых ячеек. Совершенствовались остальные компоненты накопителей — материал покрытия пластин, считывающая головка и электроника, однако сама технология записи принципиально не менялась. Такая ситуация не могла продолжаться вечно, поскольку при очень маленьких размерах ячеек вступали в силу квантовые эффекты, нехарактерные для классической физики. Понимание того, что для дальнейшего увеличения плотности необходимы новые технологии, пришло к разработчикам в XXI веке.

Любая магнитная запись базируется на ферромагнитных свойствах некоторых веществ, способных сохранять намагниченное состояние в условиях отсутствия магнитного поля. В случаях, когда это состояние не сохраняется (или вероятность сохранения недостаточно высока), запись информации невозможна. Если же размер магнитного домена очень мал, возможно возникновение суперпарамагнитного эффекта, то есть несохранения намагниченного состояния в результате случайных движений частиц. Если вещество намагничено, его частицы имеют определенный магнитный порядок, устойчивость которого напрямую зависит от размеров домена. В то же время частицы вещества находятся в непрерывном движении, причем энергия этого движения пропорциональна температуре тела. Поэтому, если размер домена мал и энергия магнитного взаимодействия сравнима с температурной энергией, магнитный порядок может нарушиться в результате температурных флуктуаций. Последний тезис означает, что размер домена имеет определенный физический предел, дальнейшее уменьшение не имеет смысла.

От чего же зависит этот предел? Прежде всего от температуры носителя — чем она меньше, тем меньше суперпарамагнитный эффект.


Несмотря на теоретическую обоснованность, уменьшить температуру винчестеров на практике так же сложно, как и представить себе домашний компьютер с системой охлаждения, скажем, на жидком азоте. Поэтому методы, основанные на простом понижении температуры, вряд ли получат широкое распространение. Суперпарамагнитный предел существенно зависит и от свойств используемого вещества. Одной из характеристик магнетиков является константа магнитной анизотропии — величина, показывающая, какую (коэрцитивную) силу надо приложить к веществу для изменения его намагниченности. Чем больше эта сила, тем стабильнее ведет себя вещество и тем меньше его суперпарамагнитный предел. Однако применение веществ с высокой коэрцитивностью приводит к усложнению процесса записи, поскольку для этого надо приложить большую силу. Далее мы увидим, что один из «методов будущего» (а именно — термоассистирующая запись) базируется на изменении температуры тела и применении веществ с высокой коэрцитивностью. При использовании традиционной параллельной записи суперпарамагнитный эффект наступает при достижении плотности записи 100–150 Гбит/дюйм2, что соответствует емкости 500–750 Гбайт в случае 3,5-дюймовых жестких дисков. В прошлом году широкое распространение получила перпендикулярная запись, позволяющая несколько отодвинуть предел плотности. Поэтому, прежде чем рассказывать о будущих технологиях, остановимся на различии параллельной записи и перпендикулярной.


Содержание раздела